Installation, Operation and Maintenance of Airflex® CS and CSA Brake Assemblies

Caution:
Use Only Genuine Airflex® Replacement Parts
The Airflex Division of Eaton Corporation recommends the use of genuine Airflex replacement parts. The use of non-genuine Airflex replacement parts could result in substandard product performance, and may void your Eaton warranty. For optimum performance, contact Airflex:

In the U.S.A. and Canada: 1-800 AIRFLEX (247-3539)
Outside the U.S.A. and Canada: (216) 281-2211
Internet: www.airflex.com

February, 1985
(Revised: June, 2001)
204086
© Copyright Eaton Corp., 2001. All rights reserved.
Table of Contents

1.0 INTRODUCTION ... 4
 1.1 Description ... 4
 1.2 How it Works ... 4
 1.3 Operating Conditions ... 4

2.0 INSTALLATION .. 5
 2.1 Reaction Pin and Bracket ... 5
 2.2 Brake Mounting ... 7
 2.3 Brake Alignment .. 9
 2.4 Air Piping .. 10

3.0 MAINTENANCE .. 10
 3.1 Inspection .. 10
 3.2 Brake Adjustment ... 12
 3.3 Friction Lining Replacement 14
 3.4 Cylinder and/or Piston Replacement 15
 3.5 Bushing Replacement ... 15

4.0 ORDERING INFORMATION/TECHNICAL ASSISTANCE 16
 4.1 Equipment Reference ... 16

5.0 PARTS LISTS .. 17
 5.1 Basic Assemblies .. 17
 5.2 Replacement Kits .. 18

Index of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction Pin and Mating Hole Diameters</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Reaction Pin Center to Brake Drum Center Distance</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Original and Minimum Drum Diameters</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Original and Minimum Friction Lining Thickness</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Minimum Spring Free Height</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Assembled Spring Height</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>CS and CSA Brake Component Parts</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Replacement Parts Kits and Sub-Assemblies</td>
<td>18</td>
</tr>
</tbody>
</table>
Figure 1
Size 4CS150
Figure 2
Sizes 6CSA200
9CSA200 & 12CSA200
Figure 3
Sizes
15CS300 & 18CS300
1.0 INTRODUCTION

Throughout this manual there are a number of HAZARD WARNINGS that must be read and adhered to in order to prevent possible personal injury and/or damage to the equipment. Three signal words “DANGER”, “WARNING”, and “CAUTION” are used to indicate the severity of the hazard, and are preceded by the safety alert symbol !.

! DANGER

Denotes the most serious injury hazard, and is used when serious injury or death WILL result from misuse or failure to follow specific instructions.

! WARNING

Used when serious injury or death MAY result from misuse or failure to follow specific instructions.

! CAUTION

Used when injury or product/equipment damage may result from misuse or failure to follow specific instructions.

It is the responsibility and the duty of all personnel involved in the installation, operation and maintenance of the equipment on which this device is used to fully understand the DANGER, WARNING, and CAUTION procedures by which hazards are to be avoided.

1.1 Description

1.1.1 The Airflex CS and CSA brakes are spring applied and air released. They are to be operated only as uni-directional brakes developing substantially less torque in the reverse drum rotation direction than in the required forward direction, as indicated by the arrow on the brake shoe. The brake is designed to be self-energizing so that the spring/shoe configuration assists in the braking action when the brake is mounted with the proper drum rotation.

The brake is recommended for applications requiring a brake that will engage should the operating air pressure fail. The releasing air volume requirement is low, making the brake ideal for high cyclic applications. There are three CS type and three CSA type brake sizes available: 4CS150; 6CSA200; 9CSA200; 12CSA200; 15CS300; 18CS300.

Throughout this manual a number given in () refers to the parts identified in the Figures 1 through 3 and Tables 7 and 8.

1.2 How It Works

1.2.1 Refer to the brake drawings, Figures 1 through 3. The two brake shoes (3) and (7) are hinged together by a pin (4). When no air pressure is applied to the cylinder (9), the spring (20) applies the force that clamps the brake shoes to the brake drum. The force exerted by the spring and drum rotation determines the torque capability of the brake. The “braking” reaction is against the reaction pin, which is retained in the reaction hole in brake shoe (7). The pin is mounted to a bracket which is fastened to the machine frame. The reaction pin also supports the brake assembly when the brake is not engaged.

When air pressure is applied to the cylinder (9), the piston (12) and rod (16) force the shoe apart to disengage the brake from the drum.

1.3 Operating Conditions

The brake should be operated in ambient temperatures within a range from -25 degrees F to 125 degrees F (-32 degrees C to 52 degrees C).

The minimum operating air pressure for the 4CS150 is 75 psig (5.1 bar). The minimum operating air pressure for all other brake sizes is 60 psig (4.1 bar). The maximum operating air pressure for all brake sizes is 110 psig (7.5 bar).

The air supplied to the brake should be clean and dry to avoid contamination of the cylinder and piston. The cylinder and piston are lubricated at the factory so no oil needs to be added. The piston is made using a BUNA-N material, therefore if any additives are used in the air supplied, they must be compatible with the piston material. If in doubt about compatibility, contact Eaton Corporation, Airflex Division.

These brakes are designed to release with a maximum air volume requirement given below:

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Air Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>10 in.³ (0.16dm³)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>25 in.³ (0.41dm³)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>25 in.³ (0.41dm³)</td>
</tr>
<tr>
<td>12CSA200</td>
<td>25 in.³ (0.41dm³)</td>
</tr>
<tr>
<td>15CS300</td>
<td>40 in.³ (0.66dm³)</td>
</tr>
<tr>
<td>18CS300</td>
<td>45 in.³ (0.74dm³)</td>
</tr>
</tbody>
</table>
2.0 INSTALLATION

2.1 Reaction Pin and Bracket:

2.1.1 Description and Function:

2.1.1.1 The brake is supported and reacted by a bracket with a steel pin which passes through the brake shoe (7). The brake is held in position on the pin by a washer and a cotter pin, as shown in Figure 4. The bracket, washer and cotter pin are customer supplied. The reaction pin can be supplied by Airflex.

2.1.2 Design, location and alignment of the reaction pin mounting is extremely important to obtain optimum brake performance.

The reaction pin mounting must be sturdy to support the brake and provide the reaction force for brake operation. Do not insert the reaction pin into a drilled hole in, or weld the pin to, the machine frame as brake alignment would not be possible. The pin should be pressed into a bracket that has oversize mounting holes to allow for adjustment. Refer to Figure 4 for typical brackets for anchoring the reaction pin to the machine frame and alternative methods for holding the pin in the bracket. Refer to Table 1 for reaction pin diameters and hole size for press fits.

Mount the brake as close to the machine frame as possible, to avoid a long unsupported reaction pin and at the same time allow for sufficient clearance to operate the brake correctly.

⚠️ Warning: On each brake there are safety and product identification plates or decals. Do not remove or paint over and, if damaged, they must be replaced.

⚠️ Caution: Before performing any work, read this manual and study the brake drawings, Figure 1 through 3. Do not risk injury - follow the instructions!
Note:

1. Cut reaction pin to length.

2. Locate and spot drill reaction pin for set screw or weld collar as shown.

3. Drill mounting bolt hole diameters .125" (3-4mm) oversize. Minimum number of bolts - 4. Minimum recommended bolt diameters are given below.

4. Drill and dowel bracket in two places after final brake alignment.

5. Tie wire all mounting bolts.

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Bolt Dia.</th>
<th>Brake Size</th>
<th>Bolt Dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>.3125" (8mm)</td>
<td>12CSA200</td>
<td>.375" (10mm)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>.3125" (8mm)</td>
<td>15CS300</td>
<td>.375" (10mm)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>.375" (10mm)</td>
<td>18CS300</td>
<td>.375" (10mm)</td>
</tr>
</tbody>
</table>

Figure 4- Typical Brake Reaction Brackets
Table 1 - Reaction Pin and Mating Hole Diameters

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Reaction Pin Diameter</th>
<th>Reaction Pin Hole Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>.750/.749" (19.05/19.02mm)</td>
<td>.7475/.7485" (18.99/19.01mm)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>1.000/.999" (25.40/25.37mm)</td>
<td>.9975/.9985" (25.34/25.36mm)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>1.250/1.249" (31.75/31.72mm)</td>
<td>1.2475/1.2485" (31.69/31.71mm)</td>
</tr>
<tr>
<td>12CSA200</td>
<td>1.500/1.499" (38.10/38.07mm)</td>
<td>1.4975/1.4985" (38.04/38.06mm)</td>
</tr>
<tr>
<td>15CS300</td>
<td>1.500/1.499" (38.10/38.07mm)</td>
<td>1.4975/1.4985" (38.04/38.06mm)</td>
</tr>
<tr>
<td>18CS300</td>
<td>1.500/1.499" (38.10/38.07mm)</td>
<td>1.4975/1.4985" (38.04/38.06mm)</td>
</tr>
</tbody>
</table>

2.1.3 The reaction pin must be free from nicks and burrs. The pin and mating hole diameters for a press fit for each brake size is given in Table 1.

2.2 Brake Mounting

⚠️ Warning:

The CS and CSA type brakes do not develop equal torque in both directions of drum rotation. The rated torque is developed only when the drum is rotating in the forward direction as indicated by an arrow on the combination brake shoe (7). The torque in the reverse direction is substantially less than the forward torque. Determine the direction of drum rotation and mount the reaction pin such that the drum rotation matches the drum rotation arrows on the brake.

⚠️ Warning:

Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position; set and block the machine in a safe position to prevent hazards when the brake is released.

⚠️ Danger:

Disconnect all electrical power. Failure to comply with the above can result in personal injury or possibly death.

2.2.1 The air cylinder (9) used on the CS & CSA brakes has a vent hole (refer to Figure 2). Mount the brake so that this vent hole faces in a downward direction (as shown in Figure 2) or is otherwise guarded to avoid contaminants from entering the cylinder.
For applications where the brake drum is overhung on the end of the shaft, proceed to 2.2.3.

For applications where the brake drum is mounted on the shaft that is already installed in place proceed to 2.2.4.

For a shaft end mounted brake drum, apply air pressure (see 1.3) to the brake cylinder (9) through the hose assembly (8) to open the brake. With the air pressure applied and the brake open, slide the brake onto the brake drum and reaction pin. Keep in mind that the drum MUST rotate in the direction indicated by the arrow on the brake shoe (7). Install the reaction pin washer and the cotter pin to position the brake. Release the air pressure and proceed to 2.3 for brake alignment.

For a brake drum installed on a shaft that is mounted between bearings, the brake can be partially disassembled in order to install it. Proceed as follows:

Warning:

Do NOT apply air pressure to the release cylinder (9) during brake disassembly. Failure to release the air pressure will result in exposure to hazardous conditions or personal injury.

The design of the brake is different for the various sizes. Disassemble as follows:

A. 4CS150 Brake:

Remove locknut (24) and back off locknut (23) slowly to relieve the spring pressure. Remove locknut (23), washer (21), spring rod (22), spring (20) and washer (25). The brake shoe (3) should now be free to pivot on pin (4) to open the brake. If there is not enough room for the brake shoe to swing, it can be removed by disassembling one snap ring (5) and pin (4).

B. 6CSA200, 9CSA200 and 12CSA200 Brakes:

Remove locknut (24). The end of the spring rod (22) is square. With a wrench, turn the spring rod CCW to relieve the spring pressure. Remove the spring rod (22), washer (21) and spring (20). The clevis (26) should now be free to swing up and away from the brake shoe (3) with the clevis out of the way the brake shoe should now be free to pivot on pin (4) to open the brake. If there is not enough room for the brake shoe to swing, it can be removed by disassembling one snap ring (5) and pin (4).

C. 15CS300 and 18CS300 Brakes:

Loosen locknut (24). With a wrench, back out the spring rod (22) CCW to relieve the spring pressure. Remove the spring rod, washer (21), and spring (20). Remove the shipping wire that fastens the clevis (26) to brake shoe (7). Slide the clevis from the brake. The brake shoe should now be free to pivot on pin (4) to open the brake. If there is not enough room for the brake shoe to swing, it can be removed by disassembling one snap ring (5) and pin (4).

2.2.4.2

Make sure that there are no burrs or nicks on the reaction pin. If there are, remove them before proceeding. For the CS type brakes coat the reaction pin and the reaction hole in brake shoe (7) with an NLGI No. 2 molybdenum disulfide grease. For the CSA type brakes, coating of the reaction pin and the reaction hole in the brake shoe is not required, just ensure that the pin and the hole areas are clean and free of contaminants.

2.2.4.3

For the 4CS150, slide the brake shoe (7) onto the drum and onto the reaction pin. For the 6CSA200, 9CSA200 and 12CSA200 brakes, slide the brake shoe (7) (with the bushings (33) and clevis (26) in place) onto the drum and onto the reaction pin.

Caution:

The clevis (26) must be installed ON the bushings (33). Failure to have the clevis properly installed may result in hazardous conditions which can cause personal injury or machine damage.

For the 15CA300 and 18CS300 brakes, slide the clevis (26) over the reaction hole in brake shoe (7), align the holes and slide the assembly onto the drum and onto the reaction pin. The reaction pin goes through both the clevis and the brake shoe.

2.2.4.4

If the pin (4) has been removed, remove any burrs or nicks and coat it and the holes in the brake shoes (7) and (3) with an NLGI No. 2 molybdenum disulfide grease.

On brakes 6CSA200, 9CSA200, 12CSA200, 15CS300 and 18CS300, remove any burrs or nicks on the end of the spring rod (22) that is inserted in brake shoe (3) and coat it and the hole with an NLGI No. 2 molybdenum disulfide grease.
2.2.4.5 Reassemble the brake by following the disassembly instructions in a reverse sequence from that given in 2.2.4.1.

2.2.5 Adjust the brake according to the instructions given in 2.2.4.1.

2.2.6 Align the brake according to the instructions given in 2.2.5.

2.2.7 If an off-balance mounting as shown in Figure 5 is necessary, the top shoe may ride on the drum when the brake is released. To prevent shoe dragging, the bottom shoe must be supported with an adjustable device similar to that shown in the figure.

2.3 Brake Alignment

2.3.1 With the brake clamped around the drum (no applied air pressure), temporarily secure the reaction pin bracket assembly to the machine frame.

2.3.2 Apply and release the air pressure to the brake to open and close the brake shoes. Observe dimensions A, B and C as shown in Figure 6. These dimensions should be identical top to bottom, as well as front to back, with the brake either engaged or released.

2.3.3 If the brake has a twisting or cocking motion when it releases or engages, this indicates misalignment and should be corrected by shimming or shifting of the reaction pin bracket for proper alignment of the brake to the drum.

2.3.4 After a satisfactory location has been established with proper running clearance assured, anchor the reaction pin bracket by doweling to eliminate any possibility of movement. Safety wire the reaction pin bracket mounting screws.

Figure 5 - Typical Off-Balance Brake Mounting

Figure 6 - Brake Alignment

Warning:
The brake shoes must not drag when the brake is released. Dragging may result in rapid friction material wear and heat generation which could result in loss of brake torque.
2.4 Air Piping

2.4.1 Ensure that pneumatic piping is free of foreign material such as pipe thread sealer, metal chips, etc. Pipe ends must be reamed after cutting to prevent reduction of effective pipe diameter. Use 1/4" pipe for the 4CS150 brake and 1/2" pipe for all other sizes. Use minimum length of piping between solenoid air valve and brake. Excessive piping and other restrictions will slow down the response time of the brake. A flexible hose (8) to allow freedom of movement must be installed between the brake and a rigid supply line.

2.4.2 For dual mounted brake installations, it is important to “tee” the two brake air cylinders, with two equal short lengths of flexible hose, into a single flow control valve and air supply. Utilizing a single flow control valve aids in synchronizing dual brake action during engagement.

2.4.3 Refer to 1.3 for operating air pressure requirements.

3.0 MAINTENANCE

⚠️ Caution:

Before performing any work, read this manual and study the brake drawings, Figures 1 through 3. Do not risk injury - follow the instructions!

3.1 Inspection:

Periodically or whenever the machinery is shut down for maintenance, inspect the brake, brake drum, supports and air connections for wear, damage or conditions that will affect brake performance. This section contains items to check and action to take during an inspection. Check the parts list, Table 7 and 8, for kits and subassemblies that are available for these brakes.

⚠️ Caution:

Do not machine the drum diameter below the minimum allowable drum diameter, brake torque can rapidly reduce to zero torque even though the friction lining is only partially worn.

3.1.1 Brake Drum Friction Surface:

3.1.1.1 If the surface of the drum is badly grooved or worn, the surface may be remachined. However, the drum O.D. must not be smaller than that given in Table 3.

⚠️ Caution:

Check the drum surface for grease or oil contamination. The surface may be cleaned with a cloth dampened with a solvent. Most solvents are flammable and to avoid personal injury or damage to the equipment, use solvents only according to the solvent manufacturer’s instructions.

⚠️ Warning:

Safety and product identification plates or decals are attached to the brake. Do not remove or paint over. Replace any that are damaged.

⚠️ Warning:

Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position, set and block the machine in a safe position to prevent hazards when the brake is released.

⚠️ Danger:

Disconnect all electrical power. Failure to comply with the above can result in personal injury or possible death.

3.1.2 Check the drum surface for grease or oil contamination. The surface may be cleaned with a cloth dampened with a solvent.

⚠️ Warning:

Most solvents are flammable and to avoid personal injury or damage to the equipment, use solvents only according to the solvent manufacturer’s instructions.

⚠️ Warning:

Do not allow oil or grease on the drum friction surface or the linings to accumulate or significant reduction in torque capability of the brake may occur.
Table 3 - Original and Minimum Drum Diameters

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Original Diameter</th>
<th>Minimum Diameter</th>
<th>Brake Size</th>
<th>Original Diameter</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>4.000" (101.6mm)</td>
<td>3.922" (99.6mm)</td>
<td>12CSA200</td>
<td>12.000" (304.8mm)</td>
<td>11.906" (302.4mm)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>6.000" (152.4mm)</td>
<td>5.906" (150.0mm)</td>
<td>15CS300</td>
<td>15.000" (381.0mm)</td>
<td>14.875" (377.8mm)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>9.000" (228.6mm)</td>
<td>8.906" (226.2mm)</td>
<td>18CS300</td>
<td>18.000" (457.2mm)</td>
<td>17.875" (454.0mm)</td>
</tr>
</tbody>
</table>

Table 4 - Original and Minimum Friction Lining Thickness

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Original Thickness</th>
<th>Minimum Thickness</th>
<th>Brake Size</th>
<th>Original Thickness</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>0.250" (6.4mm)</td>
<td>0.125" (3.2mm)</td>
<td>12CSA200</td>
<td>0.312" (7.9mm)</td>
<td>0.156" (4.0mm)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>0.312" (7.9mm)</td>
<td>0.156" (4.0mm)</td>
<td>15CS300</td>
<td>0.375" (9.5mm)</td>
<td>0.188" (4.8mm)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>0.312" (7.9mm)</td>
<td>0.156" (4.0mm)</td>
<td>18CS300</td>
<td>0.375" (9.5mm)</td>
<td>0.188" (4.8mm)</td>
</tr>
</tbody>
</table>

3.1.2 Friction Linings (6):

3.1.2.1
Friction linings that have been worn to the minimum allowable thickness as given in Table 4 must be replaced (refer to 3.3).

Caution:

The friction linings do not normally wear evenly, but must be replaced when the minimum thickness is attained at any point of the working friction material surface. If the lining thickness is below the minimum, the rivet head will score the drum and the friction lining may come loose.

3.1.2.2
If the friction linings are glazed, they may be lightly sanded to remove the glazing PROVIDING THEY DO NOT CONTAIN ASBESTOS.

Warning:

Older linings (woven type) used on the brake assemblies may have contained asbestos. Current linings are a molded material (non-woven) with a steel metal backing. If the lining is found to not have the steel backing it may contain asbestos. Using appropriate precautions for working with asbestos, remove the linings and dispose of properly. DO NOT ATTEMPT TO SAND FRICTION MATERIAL CONTAINING ASBESTOS.

3.1.3 Assembled Spring and Free Spring Height Checks:

3.1.3.1
With the brake engaged (no air pressure applied), measure the assembled spring height “D”. Refer to Figures 1 through 3 for location of dimension “D”. If necessary, adjust per instructions in 3.2.

If the assembled spring height has been adjusted and the brake does not develop proper torque, the spring may have taken a set. For the 4CS150 brake, remove locknut (24) and back off locknut (23) slowly to relieve the spring pressure. For the other brakes, loosen locknut (24) and turn the spring rod (22) CCW to relieve the spring pressure.

Measure the free height of the spring (20). If the free height is less than that given in Table 5, the spring must be replaced. If the free height is not less, reassemble the brake and adjust per 3.2.
Table 5 - Minimum Spring Free Height

<table>
<thead>
<tr>
<th>Brake Size</th>
<th>Minimum Free Height</th>
<th>Brake Size</th>
<th>Minimum Free Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CS150</td>
<td>2.91" (74mm)</td>
<td>12CSA200</td>
<td>5.88" (149mm)</td>
</tr>
<tr>
<td>6CSA200</td>
<td>4.89" (124mm)</td>
<td>15CS300</td>
<td>5.88" (149mm)</td>
</tr>
<tr>
<td>9CSA200</td>
<td>5.88" (149mm)</td>
<td>18CS300</td>
<td>5.88" (149mm)</td>
</tr>
</tbody>
</table>

Warning:

If the brake spring (20) free height is less than the minimum, proper brake torque will not be developed.

3.1.4 Reaction Mounting Pin and Pin (4):

3.1.4.1 Check the movement of the brake on the reaction pin and at pin (4). The brake should move freely at both pins to allow the brake to pivot for full brake wrap-up and lining contact when the brake is engaged.

3.1.4.2 If the brake does not pivot freely at both pins, the brake should be removed from the machine (in the reverse sequence from that in which it was installed per 2.0) and the pins and mating bores cleaned. To clean the pin (4) the brake must be partially disassembled. Refer to 2.2.5.

3.1.4.3 For the 6CSA200, 9CSA200 and 12CSA200 brakes, check for fit of the brake on the reaction pin. If the brake can be moved in any direction (other than pivoting on the reaction pin) with air pressure applied, 0.030" (0.76mm) or more, the bushings (33) should be replaced. To replace the bushings, remove the brake from the machine in the reverse sequence from that in which it was installed per 2.0 and disassemble per 2.2.4. Refer to 3.5 to remove and install the bushings.

3.1.4.4 Before reassembly, for the CS type brakes, coat the reaction pin and mating bore with an NLGI No. 2 molybdenum disulfide grease. For the CSA type brakes, coating of the reaction pin and mating bore is not necessary, just ensure that the pin and bore areas are clean and free of contamination. Further, for all type brakes, before reassembly, coat the pin (4) and mating bore with the same type of grease as above.

3.1.4.5 Reassemble the brake and install per 2.0. Adjust the brake per 3.2 and align per 2.3.

3.1.5 Air System

Check for leaks and repair.

3.1.6 Sluggish Disengagement:

3.1.6.1 Poor alignment or a loose mounting bracket may cause sluggish disengagement. Align the brake per 2.3 to correct this condition.

3.1.6.2 If spring gap settings are correct but disengagement is sluggish, the power cylinder (9) should be checked. (Refer to 3.4). If the piston (12) is distorted or rod (16) is bent, they should be replaced. If the piston (12) has become sluggish due to contaminated air, the piston should be removed from the cylinder and both piston and cylinder cleaned up and lubricated with Dow Corning 55M or equivalent. Refer to 3.4.

3.1.6.3 If the piston leaks air or the air cylinder is scored follow instructions per 3.4.

3.1.6.4 Low air pressure will cause sluggish brake release. A minimum air pressure as stated in 1.3 is required for proper operation.

3.1.7 If no further work is required on the brake or machine, engage the brake, reconnect the electrical power and remove the safety blocks from the machine.

3.2 Brake Adjustments:

As the friction linings (6) and brake drum wear, the brake will require adjustment to maintain rated torque.

Warning:

Do not attempt to increase brake torque with stronger springs or by any other means. Brake failure could result in exposure to personal injury or damage to the machine. Proper brake adjustment and good friction surface conditions will provide optimum torque conditions.
Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position, set and block the machine in a safe position to prevent hazards when the brake is released.

Disconnect all electrical power. Failure to comply with the result in personal injury or possibly death.

Set and block the machine in a safe position to prevent hazards when the brake is released. Disconnect all electrical power.

3.2.1 Spring Adjustment:

With the air pressure released from the cylinder and the brake clamped to the drum, loosen the locknut (24) and turn the spring rod (22) until the spring height dimension given in Table 6 is achieved. The location of spring height measurement is shown in Figure 1 through 3. Tighten the locknut (24).

Do not compress the spring below the specified dimension “D”. To do so could produce a high level of stress in the brake components, may cause failure of the brake, and it may make it impossible to release the brake from the drums resulting in possible personal injury.

3.2.2 Running Gap Clearance Adjustment:

3.2.2.1 Brake Sizes 4CS150, 15CS300 and 18CS300:

Apply operating air pressure (refer to 1.3) to the cylinder (9). Loosen locknut (18) and back off adjusting screw (19) until the piston (12) bottoms in the cylinder. Then, tighten adjusting screw (19) to obtain a 0.04" to 0.05" (1.02mm to 1.27mm) clearance between each friction shoe and the brake drum. Tighten locknut (18). Proceed to 3.2.3.

Do not overtighten the spring rod adjusting screw. Failure to maintain the clearance gap between the friction linings and brake drum when adjusting can result in brake structural damage, brake failure and possible personal injury.

3.2.2.2 Brake Sizes 6CSA200, 9CSA200 and 12CSA200:

Apply operating air pressure (refer to 1.3) to the cylinder (9). Loosen locknut (24) and adjust spring rod (22) to obtain 0.04" to 0.05" (1.02mm to 1.27mm) clearance gap between each friction lining and the brake drum. Tighten locknut (24). Proceed to 3.2.3.

Do all locknuts must be tightened. Failure to tighten the locknuts will result in loss of brake adjustment and loss of

<table>
<thead>
<tr>
<th>Table 6 - Assembled Spring Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Size</td>
</tr>
<tr>
<td>4CS150</td>
</tr>
<tr>
<td>6CSA200</td>
</tr>
<tr>
<td>9CSA200</td>
</tr>
</tbody>
</table>

* For the 15CS300 and 18CS300 brakes, use only Airflex supplied springs (item 20, part number 000071 x 0089, Table 7) compressed to the height given. Discard all other springs. The 000071 x 0089 spring can be identified by the following nominal dimensions and description:
1) 1.5” O.D. x 0.75 I.D. x 6.00” long (38.1 mmx19.1mmx152.4mm).
2) Red original color.
3) 15-3/4 total number of coils.
braking torque which could result in personal injury or damage to the machine.

If for any reason the spring retainer (26) has been removed from the 4CS150 brake, it may be reinstalled before proceeding with machine operation. Failure to do so could result in personal injury.

3.2.4 If faster brake response is desired, the clearance between the friction shoes and the brake drum can be reduced below the value given in 3.2.1 or 3.2.2. The clearance selected, however, must be such that no contact occurs between the rotating drum and the released brake shoes.

3.2.5 Engage the brake and remove the safety blocks installed in 3.2. Reconnect the electrical power supply to the machine.

3.2.6 If an off-balance mounting is used refer to 2.2.7, the support must be adjusted to prevent the linings from dragging on the drum when the brake is engaged.

3.3 Friction Lining Replacement:

Refer to the parts list Table 7 for parts that are available for these brakes.

Older linings (woven type) used on the brake assemblies may have contained asbestos. Current linings are a molded material (non-woven) with a steel metal backing. If the lining is found to not have the steel backing it may contain asbestos. Using appropriate precautions for working with asbestos, remove the linings and dispose of properly. DO NOT ATTEMPT TO SAND FRICTION MATERIAL CONTAINING ASBESTOS.

When working with any friction material, regardless of whether or not it contains asbestos, always wear approved safety equipment.

Friction linings that are worn below the minimum allowable thickness given in Table 4 or that have been contaminated with oil or grease, MUST be replaced, otherwise, the brake torque capability will be reduced and a hazardous condition may result.

The brake linings may be replaced in the field.

Use only Airflex supplied friction linings. Friction linings not supplied by Airflex may NOT produce adequate torque or wear and a hazardous condition may result.

Before performing any work on the brake, exhaust and disconnect the air supply to the brake.

Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position; set and block the machine in a safe position to prevent hazards when the brake is released.

Disconnect all electrical power. Failure to comply with the above can result in personal injury or possibly death.

In order to be able to replace the linings, remove the brake from the machine by following in reverse order the installation instructions given in 2.2.
3.3.4 Lining Replacement:
To facilitate lining removal, the brake can be partially disassembled by following the instructions given in 2.2.5.1. Drill out the old rivets (19) and remove the linings. Start fastening the new linings at the center and work towards the ends.

3.3.5 Reassemble the brake and install on the machine per the instructions given in 2.2.5.2. through 2.2.5.5. Adjust the brake per 3.2 and align the brake per 2.3.

3.3.6 Connect the air supply and engage the brake. Reconnect the electrical power and remove the machine safety blocks.

3.4 Cylinder and/or Piston Replacement:
Refer to the parts lists Table 7 and Table 8 for parts or replacement kits that are available for these brakes.

⚠️ Warning:
Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position; set and block the machine in a safe position to prevent hazards when the brake is released.

⚠️ Danger:
Disconnect all electrical power. Failure to comply with the above can result in personal injury or possibly death.

3.4.1 Before performing any work on the brake, disconnect the air supply to the brake.

3.4.2 The cylinder (9) and the piston (12) may be replaced with the brake installed on the machine. Disconnect hose assembly (8) from cylinder (9). Remove cap screws (13) and lockwashers (14). The cylinder and piston assembly can now be removed.

3.4.3 Inspect the rubber piston (12). If the seal lip on the pressurized side is worn or damaged, it is possible to turn the piston around on the piston rod (16) to utilize the other unworn side.

3.4.4 Disassemble the piston from the rod by removing locknut (11).

3.4.5 Reassemble using a new piston or turning the old one round. (Refer to 3.4.3).

3.4.6 Thoroughly clean the inside cylinder diameter. If the inside surface is scored, the cylinder must be replaced.

3.4.7 Coat the inside cylinder diameter with Dow Corning 55M grease or equivalent.

3.4.8 Slide the piston assembly into the cylinder and reassemble to the brake shoe (7) using lockwashers (14) and cap screws (13). Connect the hose assembly to the cylinder.

3.4.9 Adjust the brake according to instructions given in 3.2 Brake Adjustment.

3.4.10 After all adjustments are made, engage the brake, reconnect the electrical power and remove the safety blocks from the machine.

3.5 Bushing (33) Replacement

⚠️ Warning:
Prior to performing any work on the Airflex brake, make sure the machinery will remain in a safe position; set and block the machine in a safe position to prevent hazards when the brake is released.

⚠️ Danger:
Disconnect all electrical power. Failure to comply with the above can result in personal injury or possibly death.

3.5.1 Bushing (33) is only used on brakes 6CSA200, 9CSA200 and 12CSA200. To replace the bushing, the brake must be removed from the machine. Remove the brake by performing in reverse sequence the instructions given in 2.0.

3.5.2 There are two bushings pressed into the reaction pin bore of brake shoe (7). One bushing protrudes out from the surface of the brake 0.265" (6.7mm) on one side of the brake shoe while the second bushing protrudes 0.265" (6.7mm) from the other side of the brake shoe.

3.5.3 With the brake removed from the machine and the air supply disconnected, carefully loosen the jam nut (24) and turn the spring rod (22) CCW to relieve the spring pressure. Spread the open end of the clevis (26) on each side of brake shoe (7) just enough to clear the end of the bushing. Remove the clevis. The spring and spring rod will come off of the brake with the clevis.
Caution:

Do not spread the open end of the clevis more than the minimum required for disassembly or the clevis may be bent resulting in poor clevis/bushing alignment and degraded brake performance. The clevis thru hole bearing areas must be in full contact with the bronze bushings when properly assembled.

3.5.4 Press out both bushings from the brake shoe. Install the new bushings by first pressing one bushing into the reaction pin hole in the brake shoe until 0.265" (6.7mm) of the bushing protrudes from the surface of the brake shoe. Install the second bushing in the other side of the brake shoe until it also protrudes 0.265" (6.7mm) from the surface of the brake shoe.

Warning:

Do not operate the brake without the above bushing installed (per 3.5.4) in the brake shoe. Failure to have the bushings properly installed may result in hazardous conditions which can cause personal injury or machine damage.

3.5.5 When installed, one end of the spring rod is contained in a hole in brake shoe (3). Remove any burrs or nicks from this end of the spring rod and coat the end with an NLGI No. 2 molybdenum disulfide grease.

3.5.6 Reassemble the brake keeping in mind not to spread the clevis more than **absolutely** necessary to clear the bushings.

Caution:

Do not spread the open end of the clevis more than the minimum required for disassembly or the clevis may be bent resulting in poor clevis/bushing alignment and degraded brake performance. The clevis thru hole bearing areas must be in full contact with the bronze bushings when properly assembled.

4.0 ORDERING INFORMATION/TECHNICAL ASSISTANCE

4.1 Equipment Reference

4.1.1 In any correspondence regarding Airflex Equipment, refer to the information on the product nameplate and call or write:

Eaton Corporation
Airflex Division
9919 Clinton Road
Cleveland, Ohio 44144
Tel: (216) 281-2211
Toll Free: (800) AIRFLEX or (800) 824-1586
Fax: (216) 281-3890
5.0 PARTS LISTS

5.1 Basic Assemblies

Table 7 - CS and CSA Brake Component Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty.</th>
<th>4CS150</th>
<th>6CSA200</th>
<th>9CSA200</th>
<th>12CSA200</th>
<th>15CSA300</th>
<th>18CSA300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rivet *</td>
<td>(12)</td>
<td>000130X0054</td>
<td>(12)000130X0031</td>
<td>(16)000130X0031</td>
<td>(16)000130X0031</td>
<td>(16)000130X0062</td>
<td>(16)000130X0062</td>
</tr>
<tr>
<td>3</td>
<td>Brake Shoe</td>
<td>1</td>
<td>412958</td>
<td>510984</td>
<td>510955</td>
<td>510994</td>
<td>412964</td>
<td>412967</td>
</tr>
<tr>
<td>4</td>
<td>Pin</td>
<td>1</td>
<td>201600</td>
<td>201234</td>
<td>201234</td>
<td>200856</td>
<td>201086</td>
<td>201086</td>
</tr>
<tr>
<td>5</td>
<td>Snap Ring</td>
<td>2</td>
<td>000139X00024</td>
<td>000139X0009</td>
<td>000139X0009</td>
<td>000139X0014</td>
<td>000139X0014</td>
<td>000139X0014</td>
</tr>
<tr>
<td>6</td>
<td>Friction Shoe Assembly</td>
<td>2</td>
<td>415923</td>
<td>415926</td>
<td>415929</td>
<td>415932</td>
<td>415935</td>
<td>415938</td>
</tr>
<tr>
<td>7</td>
<td>Combo Brake Shoe</td>
<td>1</td>
<td>412957</td>
<td>510959</td>
<td>510960</td>
<td>510996</td>
<td>510069</td>
<td>510072</td>
</tr>
<tr>
<td>8</td>
<td>Hose Assembly</td>
<td>1</td>
<td>000318X0001</td>
<td>000318X0002</td>
<td>000318X0002</td>
<td>000318X0002</td>
<td>000318X0002</td>
<td>000318X0002</td>
</tr>
<tr>
<td>9</td>
<td>Cylinder</td>
<td>1</td>
<td>409831</td>
<td>413885</td>
<td>413885</td>
<td>409836</td>
<td>409836</td>
<td>409836</td>
</tr>
<tr>
<td>10</td>
<td>Pipe Plug</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>000077X0003</td>
<td>000077X0003</td>
</tr>
<tr>
<td>11</td>
<td>Locknut</td>
<td>1</td>
<td>000110X0019</td>
<td>000110X0012</td>
<td>000110X0012</td>
<td>000110X0012</td>
<td>000110X0012</td>
<td>000110X0012</td>
</tr>
<tr>
<td>12</td>
<td>Piston</td>
<td>1</td>
<td>405835-01</td>
<td>405835-02</td>
<td>405835-02</td>
<td>405835-02</td>
<td>405835-03</td>
<td>405835-03</td>
</tr>
<tr>
<td>13</td>
<td>Hex Head Screw</td>
<td>6</td>
<td>000001X0013</td>
<td>405835-02</td>
<td>000001X0019</td>
<td>000001X0019</td>
<td>000001X0220</td>
<td>000001X0220</td>
</tr>
<tr>
<td>14</td>
<td>Lockwasher</td>
<td>6</td>
<td>000111X0010</td>
<td>000001X0219</td>
<td>000111X0008</td>
<td>000111X0008</td>
<td>000111X0008</td>
<td>000111X0008</td>
</tr>
<tr>
<td>15</td>
<td>Spacer</td>
<td>1</td>
<td>304806</td>
<td>000111X0008</td>
<td>202604</td>
<td>202604</td>
<td>203077-06</td>
<td>203077-05</td>
</tr>
<tr>
<td>16</td>
<td>Piston Rod</td>
<td>1</td>
<td>304808</td>
<td>202604</td>
<td>307064-2</td>
<td>307064-3</td>
<td>304809-02</td>
<td>304809-02</td>
</tr>
<tr>
<td>17</td>
<td>Bushing</td>
<td>1</td>
<td>202999</td>
<td>307064-01</td>
<td>00147X0252</td>
<td>00147X0252</td>
<td>203128</td>
<td>203128</td>
</tr>
<tr>
<td>18</td>
<td>Locknut</td>
<td>1</td>
<td>000061X0001</td>
<td>00147X0252</td>
<td>-</td>
<td>-</td>
<td>000061X0009</td>
<td>000061X0009</td>
</tr>
<tr>
<td>19</td>
<td>Adjusting Screw</td>
<td>1</td>
<td>000034X0413</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>000034X0717</td>
<td>000034X0717</td>
</tr>
<tr>
<td>20</td>
<td>Spring</td>
<td>1</td>
<td>000071X0060</td>
<td>-</td>
<td>000071X0089</td>
<td>0000871X0089</td>
<td>000071X0089</td>
<td>000071X0089</td>
</tr>
<tr>
<td>21</td>
<td>Washer</td>
<td>1</td>
<td>000067X0005</td>
<td>000071X0103</td>
<td>203934</td>
<td>203934</td>
<td>203934</td>
<td>203934</td>
</tr>
<tr>
<td>22</td>
<td>Spring Rod</td>
<td>1</td>
<td>000030X0422</td>
<td>203934</td>
<td>307373-01</td>
<td>307373-01</td>
<td>307373-04</td>
<td>307373-04</td>
</tr>
<tr>
<td>23</td>
<td>Locknut</td>
<td>2</td>
<td>000110X0012</td>
<td>307373-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Jam Nut</td>
<td>1</td>
<td>-</td>
<td>000061X0015</td>
<td>000061X0015</td>
<td>000061X0015</td>
<td>000061X0015</td>
<td>000061X0015</td>
</tr>
<tr>
<td>25</td>
<td>Washer</td>
<td>1</td>
<td>000153X0551</td>
<td>000061X0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Clevis</td>
<td>1</td>
<td>306387</td>
<td>-</td>
<td>413955-02</td>
<td>413955-03</td>
<td>406865</td>
<td>406865</td>
</tr>
<tr>
<td>27</td>
<td>Hex Head Screw</td>
<td>1</td>
<td>000001X0003</td>
<td>413955-01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>Ext Tooth Washer</td>
<td>1</td>
<td>000111X0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>203627</td>
<td>203627</td>
</tr>
<tr>
<td>29</td>
<td>Warning Plate</td>
<td>1</td>
<td>203627</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>203627</td>
<td>203627</td>
</tr>
<tr>
<td>30</td>
<td>Name Plate</td>
<td>1</td>
<td>307595</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>307595</td>
<td>307595</td>
</tr>
<tr>
<td>31</td>
<td>Speed Warning Label</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>203627</td>
<td>203627</td>
<td>203627</td>
</tr>
<tr>
<td>32</td>
<td>Bushing</td>
<td>2</td>
<td>-</td>
<td>000147X0254</td>
<td>000147X0253</td>
<td>000147X0251</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>Decal</td>
<td>2</td>
<td>-</td>
<td>203627</td>
<td>203627</td>
<td>203627</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>Street Elbow</td>
<td>1</td>
<td>-</td>
<td>000079X0012</td>
<td>000079X0001</td>
<td>000079X0012</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>Speed Warning Label</td>
<td>1</td>
<td>-</td>
<td>308044</td>
<td>308044</td>
<td>308044</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>Speed Warning Label</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.2 Replacement Kits.

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty.</th>
<th>4CS150</th>
<th>6CSA200</th>
<th>9CSA200</th>
<th>12CSA200</th>
<th>15CS300</th>
<th>18CS300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Piston Kit</td>
<td>1</td>
<td>105856B</td>
<td>105858M</td>
<td>105859M</td>
<td>105860M</td>
<td>105870B</td>
<td>105872B</td>
</tr>
<tr>
<td>2 Cylinder Kit</td>
<td>1</td>
<td>105856A</td>
<td>105858L</td>
<td>105859L</td>
<td>105860L</td>
<td>105872A</td>
<td>105872A</td>
</tr>
</tbody>
</table>

1 — Contains Items: 11, 12, 15, 16
2 — Contains Items: 9, 11, 12, 13, 14, 15, 16
EATON PRODUCT WARRANTY
Subject to the conditions stated herein, Eaton Corporation warrants to the Purchaser that each new Airflex Product manufactured by Eaton will be free from failures caused by defects in material and workmanship, and will deliver its rated capacity, for a period of twelve (12) months from the date of shipment to Purchaser, provided such Product is properly installed, properly maintained, operated under normal conditions and with competent supervision. Warranty claims shall be made in writing and the part or parts shall, if requested by Airflex Division, be returned prepaid to the Airflex Division for inspection. Upon a determination that a defect exists, Eaton shall thereupon correct any defect, at its option either by repairing any defective part or parts or by making available at Eaton’s plant a repaired or replacement part. This warranty does not extend to normal wear parts or components of the Product, such as friction material and friction surfaces.

LIMITATION OF WARRANTY
THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER WRITTEN, ORAL OR IMPLIED. ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE SPECIFICALLY EXCLUDED.

In no event shall Eaton be liable for special, incidental or consequential damages. Eaton’s liability arising out of the supplying of such Product, or its use, whether in warranty, contract or otherwise, shall in no case exceed the cost of correcting defects in the Products as herein provided. Upon expiration of the twelve (12) month period, all such liability shall terminate. THE FOREGOING SHALL CONSTITUTE THE SOLE REMEDY OF PURCHASER AND THE SOLE LIABILITY OF EATON.